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a b s t r a c t

The quasi-static deformation of dry sand is widely used as an analogue to the brittle deformation of the
upper crust. The quantitative comparison of analogue to natural tectonics, or to mechanical predictions,
requires identifying sources of biases and estimating the intrinsic variability of the experimental results.
We develop experimental and statistical methods that fulfill these requirements. We consider an initially
perfect wedge resting on a flat layer, made of a uniform dry sand in a rectangular glass box. The box is
shortened lengthwise by translating one of its end walls towards the other. The lateral walls can remain
fixed, or be translated with the moving end wall. Upon shortening, the wedge is thrusted above the flat
layer forming classical fore- and backthrusts, as essentially plane-strain, structures. Lifetimes, locations,
and dips of all thrusts constitute seven quantifiable output parameters (called observables), in addition to
the shortening forces monitored at both end walls during shortening. Up to seventy measurements of
each observable were performed in seven final-state cross-sections of ten experiments. A three-step
statistical analysis allows us to prove that, first, the observables vary independently, justifying their
modeling with independent distributions. Second, the ergodic hypothesis holds, meaning that along
strike variations can be used to infer the intrinsic experimental variability. Measurements can thus be
repeated on successive cross-sections in each experiment. Third, our data set is free from bias due to
friction on the lateral walls, or due to the finite length of the box. We then construct statistical models of
each observable using either Gauss or Laplace distributions. For example, forethrusts dip at 38

� � 3.2
�
,

and backthrusts, at 41
� � 3.3

�
. We finally show how to apply these statistical models to experiments

using a different initial geometry. The statistical methods presented here are applicable to experiments
with different setups, materials and observables, although the ergodic hypothesis is relevant only to
plane-strain experiments.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the study of real tectonic structures, sand-box techniques are
used to produce analog deformation histories from undisturbed
sedimentary strata to final states that resemble actual structural
geometries. Cadell (1888) provides one of the earliest examples of
a mountain building due to horizontal shortening above a décolle-
ment, while the cross-section of the Northern Alps in granular
materials made by Bonnet et al. (2007) is one of the latest and most
impressive examples. Koyi (1997) provided a useful historical
review of these experimental techniques.

Comparisons of the results of sand-boxmodels to real structures
are often qualitative rather than quantitative, owing to structural
complexity and to limitations concerning the quantitative
aillot).
ences, California Institute of
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description of the results of sand-box models. Attempts at devel-
oping quantitative interpretations started with King Hubert (1951)
who showed that the quasi-static deformation of dry sand is
consistent with the Coulomb failure criterion, opening the way for
sand-boxmodeling of tectonic structures. Later, sand-boxmodeling
of a wedge was used to validate theoretical predictions of critical
wedge theory about the shape and evolution of an accretionary
wedge (Davis et al., 1983). Further, the nature of accretion by
underthrusting was successfully compared to work estimations
using a boundary-element method (Del Castello and Cooke, 2007),
and the dip of backthrusts in the wedge predicted from an
analytical force balance with the principle of minimum dissipation
was validated (Maillot and Koyi, 2006). During this time, both
discrete element models (Saltzer, 1992; Seyferth and Henk, 2006;
Egholm et al., 2007; Hardy et al., 2009) and finite-element
models (Ellis et al., 2004; Crook et al., 2006) were used to conduct
comparisons with sand-box experiments. Discrepancies between
various numerical techniques and implementations have been
demonstrated by benchmark tests (Buiter et al., 2006).
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In general, to have predictable quantitative experimental
results, reproducibility must be prevalent. To our knowledge, the
only attempt at quantitatively considering reproducibility is the
benchmark tests by Schreurs et al. (2006). Ten different laborato-
ries performed two plane-strain experiments, respectively in
contraction and extension. Large discrepancies were observed in
the positions, dips, and numbers of thrusts. These variations were
attributed to differences in shear along the lateral walls of the
boxes, in granular materials and in their handling methods. The
problem of the relative movement of the lateral walls with respect
to the moving end of the box was well described during a discus-
sion between Koyi and Cotton (2004) and Costa and Vendeville
(2004). Significant experimental artifacts have also been demon-
strated when basal friction is very low compared with lateral
friction (Vendeville, 2007). Here, we will explicitly demonstrate
that our experimental data are free from such biases. Additionally,
by using the same sand and the same handling protocol in all
experiments, we eliminate the main biases identified in Schreurs
et al. (2006) for our quantitative analysis of sand-box model
behavior.

The aim of this article is to quantify the experimental variability
and to identify sources of experimental biases. We considered four
different experimental prototypes, or setups, and we repeated
experiments for each setup. All setups consist of a pre-built sieved
sand wedge occupying all the box width and approximately a third
of its length. The rest of the box is filled with a flat sand layer.
Differences in the setups concern only the relative slip sense of the
lateral walls, the surface slope of the wedge and the dip of the base
of the box (Table 1). We study the growth of the sand wedge by
frontal accretion for an overall shortening of the box of about 8%
generating one or two forethrusts in a forward sequence. We then
construct statistical distributions describing the variations of the
observables (i.e., positions, lifetimes, dips of the thrusts, and the
compressive forces at both ends of the box). Thus, the experimental
results are described in a probabilistic framework, with the ulti-
mate goal of inverting them to retrieve mechanical properties of
the sand, as was done in a simpler experimental setup by Maillot
et al. (2007) and for a case study of Nankai wedge (Cubas et al.,
2008). These setups are very close to that proposed by Schreurs
et al. (2006). In this respect the present study complements
theirs, by repeating the experiments using the same protocol, sand,
and box, instead of comparing the results of different laboratories,
and by introducing a statistical treatment of the experimental
results.

2. Experiments

The experiments consist of shortening by a fixed amount of an
initially perfect sand wedge resting on a flat sand layer (Fig. 1a). To
accommodate the shortening, the sand is lifted in the flat layer at
the front of the wedge, following a classical foreebackthrust
geometry. Overall shortening magnitude was chosen to be suffi-
cient to generate two fore-back thrust pairs (Fig. 1b). However, the
intrinsic variability of the experiments yields the result that two
experiments out of ten produce only one thrust pair (Fig. 1c).
Table 1
Experimental prototypes.

Prototypes L (mm) H (mm) l (mm) h (mm) a (deg

1A 370 26 162 9 6
�

1B 370 26 162 9 6
�

2A 370 26 96 9 7
�

2B 370 26 96 9 7
�

3 407 40 176 15 8
�

2.1. The sand-box

The experimental box is rectangular, with inside dimensions
of 280 mm (width), 370 mm (length) and 90 mm (height). It can
be tilted lengthwise producing a dip of the basal plate in the
direction of shortening, which is typical of accretionary wedges.
All the box is built with 10 mm-thick glass with a precision of
�0.05 mm, which is an error smaller than our smallest grain
sizes. In all experiments, shortening of the sand is imposed by
translating the back wall (i.e., the wall on the wedge side) over
30 mm at a rate of 0.52 mm/s with an electric motor via
a screw.

This sand-box allows us to infer the effect of the horizontal
shear stress due to sand friction on the lateral walls of the box by
using two box configurations. In configuration A, the lateral walls
are translated with the back wall, while in configuration B, the
back wall moves alone (Fig. 2a,b). Any plane-strain sand-box
experiment fits into one of these two categories. Sometimes in the
literature, configuration A is referred to as a “pull” set up that is
typical of boxes using a conveyor belt, and configuration B as
a “push” set up. Note that in configuration B, the sand is overall
lifted up by the movement of the back wall, while in A, the back
wall remains at a constant altitude. Here, the box is horizontal
(b ¼ 0), so the only difference between the two configurations is
the lateral friction. Basal and side glass walls were treated with
a carbon based product (“RainX”) that reduces friction with sand.
During the experimental work, we switched the lubricant for
a new “RainX” release from the maker (Shell International). The
change in lubricants did have a slight effect on friction and
cohesion, which is quantified in Section 3.3. We measured the
friction of the sand for the glass treated with the new “RainX”, and
obtained a friction angle of 7.5

�
e10

�
(coefficients of 0.13e0.18) and

a negligible cohesion of about 10 Pa. For comparison, the
untreated glass yielded 12

�
e18

�
(0.21e0.32), and the same negli-

gible cohesion.
A second feature of the box is that strain gauges are behind the

end walls and measure the force that the walls sustain during
shortening (Fig. 1b,c). A piece of cloth was placed between the end
and lateral walls to prevent blockage due to sand leaks and thus
improve the precision of the force measurements. Vertical move-
ment is free but the weight of the glass wall resting on the bottom
plate is sufficient to prevent its uplift, although a very thin film of
sand (a fraction of a mm) still leaks below the moving back wall.
Before filling the boxwith sand, a shortening of 30mm is applied so
that all parts of the box adjust their respective positions. In
particular, the strain gauges adjust their tension so as to equilibrate
friction of the back wall against the rest of the box. We then set the
zero signal of the gauges in this very configuration and completed
filling of the box with sand. Thus, during further shortening, the
gauges measure only the additional force needed to shorten the
sand, and not that needed to move the walls. It was difficult
however to ensure a constant tension of the gauges during box
filling, and this part of the experimental protocol may be at the
source of a bias for the force measurements, which will be dis-
cussed in Section 4.
) b (deg) S mm Wall config. Number of experiments

0
�

30 A 5
0

�
30 B 5

3
�

30 A 2
3

�
30 B 2

0
�

43.5 A 1



Fig. 1. Photographs of initial (a) and typical final (b,c) states of the experiments. Note the opposite curvature of thrusts on the topography in (b), where the lateral walls remained
fixed (Fig. 2b), and in (c), where they followed the translation (Fig. 2a). The strain gauges placed behind the walls (b) allow us to measure the horizontal compressive force at both
ends of the box during the shortening.
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2.2. The sand body

A layer of dry sand of thickness h ¼ 9 mm covers the inside of
the box and is overlain by a wedge of the same sand with surface
slope a and maximum thickness H ¼ 17 mm at the back wall
(Fig. 3a). The length l of the wedge depends on its slope a and basal
dip b as l ¼ 17/tan(a þ b) mm (Table 1, Fig. 3a). A displacement
S ¼ 30 mm was applied in all experiments.

We only used a single batch of sand for all the experiments:
Fontainebleau aeolian quartz sand (99.7% of quartz) of median
grain size 250 mm with 95.5% in mass of grain sizes comprised
between 150 and 425 mm. The sand was previously found to have
a peak friction of 33

�
weakening to 30

�
over a slip of 3 mm for

a newly formed slip surface, and 1 mm for reactivation of an
existing slip surface (Klinkmuller et al., 2008). The sand pack was
produced with a sand distributor that was adapted from Wygal
(1963) to improve the planarity of the pack (Fig. 4). Sand packing
is dense, reproducible, and homogeneous throughout the box with
a value of 1710� 6 kg/m3. During our experiments, the temperature
in the laboratory remained between 17.5

�
and 22.5

�
, and the rela-

tive humidity, between 60% and 78%.
2.3. Experimental prototypes

Four different experimental setups were used and we refer to
them as the prototypes. We conducted a total of fourteen experi-
ments using one of the four prototypes (Table 1).

For prototypes 1A and 1B, the box is horizontal (b ¼ 0) and the
initial slope of the sand wedge is a ¼ 6

�
. For prototypes 2A and 2B,

the box is tilted by 3
�
and the wedge surface slope is 7

�
so that its

taper angle is a þ b ¼ 10
�
. The letter ‘A’ or ‘B’ following the

prototype number refers to the configuration of the lateral walls
(Fig. 2a,b). Both prototypes of 1 were repeated experimentally five
times, and prototypes of 2, twice. Ideally, all experiments for
a prototype would yield the same results, but variability did occur,
necessitating the statistical analysis that is the focus of this
contribution. The analysis focuses on the 10 experiments for the
two types of prototype 1. Data from prototypes 2 are only used in
Section 4.2 to test whether their variability follows the same
statistical behavior determined from prototype 1 experiments, i.e.,
to test the statistical homogeneity of the distributions obtained
from prototypes 1.
2.4. The observables

Generally, after 4 to 5 mm of shortening during the experi-
ments, the sand deforms by the formation of two conjugate
reverse faults called ’forethrust 10 and ’backthrust 10 (Fig. 3b).
Continued shortening displaces the wedge over the forethrust
creating new relief. Backthrusts rooted at the base of the fore-
thrust form regularly to ensure kinematic compatibility during
thrusting. A second fore- backthrust system forms beyond the first
one during late shortening (Fig. 3c), except in two experiments of
prototypes 1B.

Eight “observables”, i.e. quantifiable output parameter, were
gathered for comparison and characterization of the experi-
mental outcomes. The first observable, named d (Fig. 3c) is the
shortening accumulated at the back wall during displacement on
the first forethrust, or the “lifetime of the first forethrust”. We
measure it by filming with oblique lighting the top surface of
sand during shortening and identifying the emergence of the
first and second forethrusts. The interpretation of d as a measure
of slip accumulated on the forethrust is supported by the
absence of visible diffuse compaction or layer parallel shortening
during displacement on the forethrust. It is however possible
that compaction accommodated some deformation above the
sole thrust ahead of the forethrust ramp (Mulugeta and Koyi,
1987, 1992).

After the end of experimental deformation, the sand was
dampened, 15 cross-sections cut at 20 mm intervals across the box
width, and the profiles were photographed. On each photograph,
we measured (Fig. 3d): the dips g1 and g2 of the first and second
forethrusts, respectively, as well as the dips q1 and q2 of the asso-
ciated backthrusts. These dips are visible on the photographs from
the geometry of the strain markers in the sand (Fig. 1). Where
several backthrusts formed at a forethrust, we measured only the



Fig. 2. The two box setups used to identify side-wall effects. In a), the motor pushes together the left hand wall with the basal plate (in white) down dip (angle b) towards the back
wall. In b), the basal plate is turned by 180

�
and the motor now pushes the back wall (in white) alone up dip. All parts shown in grey are fixed with respect to the Earth reference

frame. Typical top view photographs at the end of experiments are shown below each configuration. In (c), top view drawings of the emergence of the first forethrusts in the final
states of all ten experiments of the prototypes 1A (solid lines) and 1B (dashed lines). To allow comparison, the initial prism is now at the left for both configurations. The thin dashed
lines indicate the positions of the seven cross-sections selected to measure the observables.
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last one. Second, we measured the lengths d
0
and r0 (Fig. 3), and we

define the location of the first forethrust as d ¼ d
0 � l. Location of

the second thrust ramp, r, is defined as

r ¼ r0 � h=tanðg1Þ � h=tanðq2Þ: (1)

Thus, each cross-section is characterized by seven geometrical
observables: three lengths (d, d, r), given in mm throughout the
article, and four angles (g1, g2, q1, q2), given in degrees.

Repetition of measurements by the same or different observers
yielded a typical range of angles of �1.5

�
and range of lengths of

�1 mm. These ranges are smaller than the variability of the data
and are actually about the size of the symbols used in graphs to
illustrate the results (e.g., Fig. 5). This variability is neglected in the
statistical analysis.

The eighth and ninth observables are the average forces along
the direction of shortening sustained by the front and back
walls and measured with strain gages. Only the force on the front
wall was used in the analysis of biases (Section 3.3). The force at the
back wall is discussed in the section on the statistical modeling of
the data.

Finally, the initial slope a of the wedge varies between
experiments, and experiences a slight change of about half
a degree due to compaction deformation occurring during initial
shortening. We measured a at the end of each experiment (noted
af), and we interpreted it as the actual wedge slope at the onset
of thrusting, because it corresponds to the arrest of diffuse
compaction.

3. Statistical analysis of the observables

The purpose of the statistical analysis, is to establish whether:
(i) the measurements of the observables are independent; (ii) we
can interpret each cross-section as an independent experiment;
(iii) we can identify biases in the data due to the experimental
apparatus and protocol. To determine the answers to these three
questions, we used the data about observables from the Prototype
1A and 1B experiments. For these experiments, we used the seven
central cross sections to minimize bias due to friction on the
lateral walls. Thus, for ten total experiments, seventy total cross
sections provided up to seventy measurements of each observable
(Table 2, column 1).

3.1. Independence of the observables

Given seven geometric observables, twenty-one graphs of pairs
can be constructed (Fig. 5). All graphs show roughly cloud-shaped
distributions, indicating that all observables have mono-modal
distributions. The values of d are slightly clustered: they tend to
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gather along horizontal lines in all six graphs where they are
plotted. The clusters are populated by data from the cross-sections
of the same experiment. Indeed, the films for the top views of the
sand during shortening show that the forethrusts emerge at the
surface nearly simultaneously across the whole box, thereby
sieve

reservoir

Fig. 4. Schematic illustration of the sand distributor for producing the initial sand
pack. Sand flows from the holes at the bottom of the reservoir with dimensions slightly
greater than the box. The sand grains are diffused and slowed down by a sieve before
falling as a uniform rain into the sand box, and settling at a rate of 0.3 mm/s. Every
2 mm, the sand rain is stopped and a thin layer of colored sand is sieved across the box
to act as a marker. The wedge slope is created by 2 mm-thick steps using a cache
above the sand box. The only manipulation of the sand consists in filling the reservoir
of the sand distributor. No scrapping, vibrating, compressing step, or sharp tap is
performed.
yielding almost the same value of d for all cross-sections of an
experiment. Note that the maximummeasured value of d is 25 mm
because the first forethrust usually formed after 4 to 5 mm of
shortening and the total shortening was 30 mm. In all graphs, the
absence of clear elongation of the distributions along any direction
is a result of the independence of the observables. Considering that
all cross-correlations are below 40%, we conclude that the seven
geometric observables are sufficiently independent, particularly
because clear dependence is usually concluded for correlations
above 75%.

3.2. Hypothesis of ergodicity

For reliable statistical testing, experimental measurementsmust
be repeated as many times as possible. If we choose to study
a single cross-section in each experiment (e.g., the central one), we
will measure only one value of each observable per experiment.
Consequently, several tens of experiments would be needed before
a statistical analysis was possible. Conversely, if we reduced the
number of needed experiments by choosing to study asmany cross-
sections as practically possible (e.g., cutting sand slices every
2 mm), we risk measuring values that are not independent and
hence, not statistically valid. To ascertain the appropriate mix of
number of experiments and spacing of sections to create a data
population with internal independence for statistical analysis, we
need to establish ergodicity, or the statistical equivalence between
variation along strike and variations across repeated experiments.
We therefore check the two following conditions: (1) two succes-
sive cross sections should not be statistically dependent; (2) an
observable must vary among cross-sections of any experiment in
a manner similar to its variation across the whole data set for all
experiments. Because we have at most seventy measurements of
any observable, we have recourse to visual tests (Figs. 6 and 7)
rather than numerical tests.
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For statistical independence to apply, values for the geometric
observables should display random variations from one section to
the next in an experiment (Figs. 2c and 6). Curves in Fig. 6 should
thus display irregular saw-tooth shapes. The four graphs for the
fault dips (q1, q2, g1, g2), and that for r, suggest a satisfactory inde-
pendence of the cross-sections. The graph for d show less irregular
curves, and therefore more dependence between the cross-
sections. The graph for d is markedly different, with almost constant
values for all cross-sections in an experiment. In fact, four experi-
ments show a constant value with only four showing a variation in
value. A rough estimate of the sufficient distance between sections
can be obtained by adding the total widths spanned by all eight
curves (8 � 14 cm), and dividing this by the total number of vari-
ations in all curves (5). Thus, substantial variations of d are expected
to occur approximately every 20 cm along strike.

For the second condition, values from a single experiment
should span the same range as for all experiments, which seems
applicable for the angular observables from visual inspection of the
data (Fig. 6). In contrast, d, d, and to a lesser extent r, show values
from a single experiment typically occupying only a portion of the



Table 2
Statistical models for observables of prototype 1 experiments.

Number of meas. Number N of indep. meas.a Gaussian model Laplacian model

Mean value Standard deviation c2 Test Median value Mean deviation c2 test

d (mm) 70 35 �16.9 5.9 60% L16.64b 4.4 76%
df.l. (mm) 35 17 �13.4 5.1 49% �14.83 4.5 51%
r (mm) 52 26 12.8 3.6 92% 12.7 2.9 60%
d (mm) 56 12 21.4 3.8 89% 22.1 3.1 57%
df.l. (mm) 28 6 21.9 2.2 69% 22.3 1.7 69%
g1 (deg) 68 68 37.7 4.4 35% 37.5 3.2 61%
q1 (deg) 67 67 40.3 3.6 25% 40. 2.9 17%
g2 (deg) 54 54 39 3.2 67% 39.1 2.4 13%
q2 (deg) 52 52 41.6 3.8 44% 41.8 3.0 82%
af (deg) 70 10 6.6 0.5 97% 6.5 0.4 92%

a See Appendix 1.
b Figures in boldface indicate the most appropriate model shown graphically in Fig. 11.
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range for all values. This evaluation can be pushed further by
assuming momentarily that all observables fit a Gaussian distri-
bution. Then, the internal variability si of an observable within the
cross-sections of an experiment should be close to its variability st
across all the data set. To illustrate this condition, consider
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a favorable case for the dips q1 and g1 (Fig. 7). All data are well
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that of the whole data set (thick dashed ellipse), confirming the
statistical convergence of the mean values of each experiment. This
outcome means that the cross-sections provide an efficient
sampling of these two observables.

For conciseness, we do not show these graphs for the 21 pairs of
observables. Instead, we now show an unfavorable case, with d and
r (recall that we could measure r in only eight experiments).
Symbols for particular experiments cluster within the data field for
all experiments, yet six means do cluster, and the results of
particular experiments yield generally smaller deviations than for
the entire data set. Furthermore, standard deviations of the whole
data set (thick dashed) and of the mean values of each experiment
(thick solid) are very close, indicating a slow statistical convergence
of the cross-sections, i.e., a less efficient sampling of d and r, than of
q1 and g1.

Based on the analysis of the angular observables, we conclude
that the cross-sections separated by 20 mm, at roughly twice the
frontal layer thickness h¼ 9mm, can be interpreted as independent
experiments when measuring fault dips. In contrast, we conclude
that truly independent measurements of d and r occur only every
second cross-section (i.e., for cross-sections separated by 40mm, or
4.5 � h). The lifetime of the first forethrust, measured by d, requires
a much larger distance between cross-sections, around 20 cm (i.e.,
22 � h). These conclusions will be used in section 4 to set the
numberN of independentmeasurements in the c2 tests for the fit of
the datawith Gaussian and Laplacian distributions (Table 2, column
2; Appendix 1).

A physical interpretation of these conclusions suggest that fault
dips are dependent mainly on the intrinsic properties of the sand
and of the initial state of packing, which are two particularly well-
controlled steps in our experiments (same batch of sand, and use of
a distributor). Fault locations would be more sensitive to less well-
controlled experimental steps such as basal and lateral friction, or
regularity of the initial sand pack, because these variations act
indifferently on all cross-sections of an experiment, but differently
between experiments. Finally, the nearly constant values of d in
each experiment indicates again that the second forethrust
develops very rapidly along strike as shortening progresses. This
outcome is reminiscent of studies for real fault displacement
profiles that suggest a fast lateral growth of fault planes with
respect to slip accumulation.

3.3. Identification of biases

3.3.1. Friction on the lateral walls
The effect of friction on the lateral walls is examined by

comparing experimental results from lateral walls in configuration
A to those in configuration B (prototypes 1A and 1B, Fig. 2, Table 1).
The effects of friction are visually obvious for the edges of the
deforming sand body because of the structural curvature (Fig. 2), so
we focus on the seven central sections for each experiment. For
these sections, d is plotted versus the other six geometric observ-
ables and the two data populations of each set of experiments for
a prototype configuration are tested for similarity using a c2 test
(Fig. 8 and appendix A2 for implementation). Classically in statis-
tical works, the two distributions are considered similar for Q � 5%.
Clearly, d, q1, g2, q2, and r pass the test and for the central sections
they demonstrate independence from the friction on the lateral
walls. g1 fails the test (Q ¼ 0.36%) because of a mean value slightly
higher (about 3

�
) in configuration A. Also, for these six geometric

observables, the mean values with standard deviations overlap,
which supports the conclusion that their measured characteristics
in these central sections are independent of the experimental
configuration and hence, the effects of friction on the wall.



Fig. 8. First and third columns of graphs: measurements of six geometric observables versus the seventh geometric observable, d, in experiments of prototype 1A (crosses) and 1B
(circled crosses). The Q values in the top right corners are results of c2 tests on the similarity of the two distributions. Second and fourth columns of graphs: mean values and
standard deviations for the observables with same symbols.

Fig. 9. First and third columns of graphs: measurements of six geometric observables versus the seventh geometric observable, d, in experiments using the discontinued lubricant
(crosses) and the new lubricant (circled crosses). The Q values in the top right corners are results of c2 tests on the similarity of the two distributions. Second and fourth columns of
graphs: mean values and standard deviations for the observables with same symbols.
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d shows strong sensitivity to the prototype configuration with
data populations not fully overlapping and mean values with
standard deviation not overlapping (Fig. 8). However, d could not be
measured for two 1B experiments, so d would necessarily be
greater than 25mm, whichwould createmore overlap between the
results for 1A and 1B configurations.

3.3.2. Change of lubricant
Considering the two lubricants, the data was again separated

into two populations: discontinued lubricant and current lubricant.
Comparison of the two populations shows that, for g1, g2, q2, r,
lubricant choice did not create a bias, and the populations are
graphically and statistically similar (Fig. 9). For q1, the populations
of the discontinued lubricant (crosses) display slightly lower mean
and dispersion values, implying that this geometric observable is
slightly biased by the lubricant choice. d and d have higher values
for the older (discontinued) lubricant, so a bias occurs because the
older lubricant is more efficient when moving sand against glass.

3.3.3. Asymmetry of the box or sand pack
The last test concerns a possible asymmetry of the results across

the plane cutting the box in two identical halfs, i.e. passing through
the central cross-section (numbered 4 in Fig. 2c). The data, not
Fig. 10. Example of an experiment with two biases (prototype 3, Table 1). The top view of the
thrusts throughout the box width. The forces measured at back and front walls during shor
shown for conciseness, exhibit similarity between the population
for each half for each of the seven geometric observables. Therefore,
asymmetries in the shape or density of the initial sand pack, or in
the movement of the back wall with respect to the center plane do
not introduce any meaningful bias.

3.3.4. Finite length of the box
The force sustained by the front wall was negligible in all

experimental runs. This observation proves that the shortening
force at the back wall was fully balanced in the frontal flat layer by
basal and lateral friction, and thus that the finite length of the box
did not affect results.

3.3.5. Example of a biased experiment
The effects of the biases can be demonstrated by using a slightly

different prototype (Table 1, prototype 3). The sand layer is now
much thicker than before, increasing contact with the lateral walls.
The walls of the box were also not lubricated. Thrusts were curved
in top view across the entire experiment and the front wall expe-
rienced compression (Fig.10). These outcomes indicate that the box
was too narrowwith respect to the domain of frictional effects from
the lateral walls and that the box needed to be longer to achieve
a force balance within the model.
final state in a) shows that shear stresses due to friction on the lateral walls curved the
tening in b) show that some compressive stress has been transmitted to the front wall.
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Fig. 11. Histograms of the measurements for each observable and the final wedge
slope af, with theoretical distribution (Gaussian or Laplacian). Rectangular boxese
histograms, solid linese theoretical distribution, vertical barse mean value
(Gaussian case), or median value (Laplacian case). The Q values in the top right
corner of each graph indicate the confidence probability that the experimental
distribution fits the theoretical one, according to a c2 test, and N indicates the
number of independent measurements used to perform the test (see
Appendix 1).

Fig. 12. Schematic cross-section for the experiments of prototypes 1A and 1B at the
onset of the second thrusting event prior to the completion of experiments. The arrow
shows the shortening and the shaded area illustrates the uncertainty for this short-
ening magnitude. The uncertainty for the positions and dips of the backthrusts and
forethrusts is also shown with shading.
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4. Statistical modeling of the observables

The statistical modeling aims at replacing the measurement
populations by theoretical distributions which are amenable to
theoretical treatment or to quantitative comparisons with e.g.
numerical predictions of the experiments. Two classical mono-
modal distributions are likely adapted to our data: Gaussian and
Laplacian. The difference is that in the Gaussian distribution the
data are mostly gathered around their mean value whereas the
Laplacian distribution allows them to be further away from their
median value. c2 tests to measure the fit between the two theo-
retical distributions and the data are all above 10% and therefore,
positive (Table 2, and implementation in Appendix 1). However, r,
d, q1, and g2 exhibit higher percentages with the Gaussian distri-
bution. They are therefore best described by a Gaussian distribu-
tion whereas d, g1, and q2, best fit a Laplacian distribution (values
in bold face). Data populations were graphically compared to the
chosen theoretical distribution, and overall, the data populations
do match the theoretical distributions with single modes (Fig. 11).
Departures from the theoretical distributions are due to asym-
metry (q1, g1, r), and excessive (d), or depressed (q1, q2, g2), central
peak of the histograms. However they are not statistically signif-
icant because of the limited number of independent measure-
ments. The distributions of d and d using the first lubricant (lines
df.l. and df.l., Table 2) display slightly greater mean or median
values, interpreted, again, as the result of a better lubrification by
the older product. The value of the surface slope af at the end of
the experiment is slightly greater than at the beginning:
6.6

� � 0.5
�
.

Fig. 12 illustrates the uncertainty for the geometric observables
at the onset of the second thrust-fault pair. The shading for the
uncertainty is based on the standard deviation for the data pop-
ulations matched to Gaussian distributions and for the mean
deviation for populations matched to Laplacian distributions. This
schematic illustration provides guidance for future experiments
using these configurations (prototypes) in terms of the expected
values for the geometric observables.

4.1. Modelling of the total shortening force

Measurements for 13 experiments (six Prototype 1A and seven
1B) were converted to Newtons by calibration of the strain gauges,
which behaved in a linear elastic manner. The measurements were
then processed using a 3 mm Hamming filter, so that each
measurement was replaced by the average of the measurements
located at � 3 mm along the curve. The linear increase from zero to
one mm displacement corresponds to the elastic deformation of
the strain gauges. After reaching a broad maximum, five curves
stabilize around a value for the normalized force of 0.85, seven
curves stabilize around 1.05, and one curve stands alone around
1.35 (Fig. 13). We are not able to explain these variations in
normalized force by the effect of the configuration of the lateral
walls, nor by the change of lubricant, because comparisons of the
data for each case do not show any differences. Slight changes in
the tension of the gauges during the filling of the box with sand,
resetting their zero level, is the most likely explanation of these
variations.

Usually, localisation of deformation leading to the formation of
thrusts is correlated to force variations (Krantz, 1991; Nieuwland
et al., 2000; Lohrmann et al., 2003). Here, the correlation is very
weak, or absent. This poor correlation is due to the thickness of the
sand being very small compared to its horizontal dimensions. This
setup was chosen to minimize the effect of lateral friction. With the
same apparatus, stronger force variations were observed with
thicker sand samples (Fig. 10). We believe therefore that the
flatness of the curves of Fig. 13 reflects the true evolution of the
force at the back wall. In the absence of a satisfactory correction
procedure to guarantee the same zero level for each curve, we kept
all data and compute a single mean curve with standard deviation
(Fig.13). Forcemeasurements should prove to be a useful additional
informationwhen reproducing experiments by numerical methods
or mechanical analysis.



Fig. 13. Force sustained by the back wall during shortening. Thin solid linese measurements of individual experiments, thick blak linee mean value of all experiments, grey areae
standard deviation from the mean value.

Table 3
Statistical models for observables of prototype 2 experiments.

Nbr. of
meas.

Nbr. N of
indep. meas.

Gaussian model Laplacian model

Mean value Standard
deviation

st. dev. from
exp. 1

Median
value

Mean
deviation

mean dev.
from exp. 1

d (mm) 28 14 �3.9 7 5.9 �4.1 5.1 4.4
r (mm) 12 6 15.6 3 3.6 14.6 2.5 2.9
d (mm) 28 4.8 23.9 1.3 3.8 23.9 0.9 3.1
g1 (deg) 24 24 39 6.5 4.4 39.7 5.4 3.2
q1 (deg) 24 24 38.2 4.9 3.6 37.1 3.8 2.9
g2 (deg) 14 14 39.9 3.5 3.2 37.7 2.9 2.4
q2 (deg) 12 12 41.9 3.4 3.8 42.8 2.6 3.0
af (deg) 28 4 7.5 0.5 0.5 7.5 0.35 0.4
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4.2. Application to other experiments

To test whether the variations of the observables are valid for
other experimental configurations, we consider experiments per-
formed using the prototypes 2A and 2B (Table 1), which differ from
experiments of prototypes 1A and 1B by the surface slope a, now at
7

�
instead of 6

�
, and the basal slope b, now at 3

�
instead of

0
�
(Fig. 3a). Each experiment 2A and 2B was repeated two times,

using the same protocol and yielded a number of measurements for
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Fig. 14. Histograms for the measurements of four observables of experiments 2A and
2B. Rectangular boxese histograms; solid linese theoretical distribution, vertical bare
mean value (Gaussian case), or median value (Laplacian case). The theoretical distri-
butions are constructed using the dispersion estimators of experiments of prototypes
1A and 1B (Table 3, columns 5 and 8 respectively).
each observable (Table 3). From thesemeasurements, we computed
the central and dispersion estimators for each observable in the
Gaussian and Laplacian cases (columns 3, 4, and 6, 7, of Table 3,
respectively), and we reproduce the dispersion estimators of
experiments 1 in columns 5 and 8, for comparison. Considering
a graphical comparison of Prototype 2 data versus appropriate
Gaussian or Laplacian distributions using Prototype 1 dispersion
estimators (Fig. 14), visual comparison of these curves with the
histograms allow us to conclude that the variations of d, g1, q1, and
g2 are well represented by the error bars of experiments 1. c2 tests
support these conclusions for g1 (Laplacian case) and q1 (both
cases). The number of independent measurements is generally
insufficient to rely on c2 tests for q2, r, d, af (N < 14). Finally,
although only 4 independent measurements exist for the prototype
2 experiments, it is worth noting that the surface slope af at the end
of the experiments behaves as in experiments 1, where it is greater
than the initial slope a by half a degree, with the same dispersion.
5. Conclusion

We have presented generic experiments of the quasi-static
growth by shortening in plane-strain conditions, of a sand wedge
resting on a flat sand layer. Our goal is to cast the observed
evolution of thrusting into a set of geometric and mechanical
measurable quantities (or observables), and then to construct
statistical distributions describing their variations. A specific
experimental apparatus allowed us to produce rapidly uniform
sand packs, reverse the sense of friction on the lateral walls, and
measure the forces necessary to shorten the sand body. The main
conclusions of the analysis and statistical modeling are:

- Gauss or Laplace distributions adequately model our
measurements. Typical error bars for fault dips are around 3.3

�
,

and around 3.8 mm for fault locations.
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- Cross-sections can be considered as independent experiments
(hypothesis of ergodicity) if they are separated by 20mmwhen
measuring fault dips, 40 mm for fault locations, and about
200 mm for the lifetime of the first thrusting event.

- The finite width of the box creates a bias due to shear stress on
the lateral walls that disappears at a distance of about 80 mm
from the walls. The finite length of the box did not influence
the results.

- Error bars remain valid for experiments using slightly different
setups (dipping basal plate and wider wedge taper angle).

It should be underlined that a change of material, protocol, or
setup would change the figures determined here, but the statistical
analyses can be used in any laboratory, in order to construct
appropriate statistical models. Thesemodels allow us to cast the 3D
experiments into a 2D cross-section with error bars. This is
a necessary step towards a quantitative comparison with theoret-
ical predictions.
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Appendix A1. c2 test on the fit between an experimental and
a theoretical distribution

We have N independent measurements of an observable, and
we would like to test whether they follow a given theoretical
distribution. First, we build a histogram of the data with p bins
(definition of the bins is treated below). Let Ni be the actual number
of samples in bin i, and Ni

th, the number of samples in bin i
according to the theoretical distribution. We then calculate the fit
between the two histograms as (Press et al., 1992, equation (14.3.1))

D2 ¼ N
Xp

i¼1

�
fi � f thi

�2

f thi
; (2)

where fi ¼ Ni/N, and fi
th ¼ Ni

th/N and the result of the test is usually
named Q and is one minus the image of D2 by the cumulative
distribution function of c2pe1 (this can be found in standard
statistical libraries of usual softwares such as Matlab or Scilab). A Q
value of one (obtained when D2 ¼ 0) indicates a perfect fit, while
a value of zero indicates a complete discrepancy between the two
distributions. These values are given in percentage in the graphs of
Figs. 11 and 14. In practice, a fit is accepted for Q� 10%, and rejected
for Q � 5%.

Choice of the number of independent measurements for each
observable

The test is rather sensitive to the value of N (Table 2, column 2):
the same histogram may pass the test if N is small, and may be
rejected if N is large. For d and r, we define N as half the number of
actual measurements because we showed in Section 3.2 that the
cross-sections were too closely spaced for these observables.
Considering that only half of the measurements are independent
whenperforming the tests is equivalent to having considered cross-
sections separated by 40 mm instead of 20 mm. The spacing of
20mm appeared satisfactory for all fault dips, and thereforeN is the
actual number of measurements for q1, g1, q2, g2. d, the lifetime of
the first thrust, could be measured in only eight experiments out of
ten, and exhibited lateral variations in half of these eight experi-
ments. We therefore define N for d as N ¼ 8 þ 8/2 ¼ 12. Finally, the
surface slope of the wedge at the end of shortening, af, exhibited
a constant value in all cross-sections of each of the ten experiments,
and thereforeN¼ 10 instead of 70. All these values are summarized
in Table 2 for experiments 1A and 1B. Tests concerning experiments
2A and 2B relied on the same arguments (Table 3).
Definition of bins to construct histograms for a comparison with
a theoretical distribution

Assumewe haveN independentmeasurements of an observable
and want to construct a histogram of their values for comparison
with a theoretical distribution. Typically, the number of bins p¼ 9 if
N � 45, p ¼ 5 for 25 � N � 45, and p ¼ 3 for N � 25, so that at least
five samples occur in each bin, otherwise the statistical test is not
reliable. The p þ 1 quantiles that define the limits of the p bins are
defined as follows. First, compute from the data the central and
dispersion estimators (e.g., mean value and standard deviation for
the Gauss distribution), which define the theoretical probability
density function of the data. Then, compute by integration the
corresponding cumulative density function (CDF) which has values
between 0 and 1. The quantiles are the values such that their image
by the CDF are regularly spaced between 0 and 1. The first and last
quantiles are however particular cases that depend on data. They
are defined slightly below and above the minimum and maximum
measurement, respectively.
Appendix A2. c2 test on the similarity between two
experimental distributions

Assume we have N measurements of an observable, and we
separate these into two groups of NR and NS measurements,
respectively. We would like to decide whether these two distri-
butions are similar, to determine for example the effect of a change
of experimental setup on our measurements. We first build
a histogram of the data with p bins (definition of bins is treated
below). Let Ri and Si be the numbers of measurements falling into
bin i in each group respectively. We then calculate (Press et al.,
1992, equation (14.3.3))

D2 ¼
Xp

i¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NS=NR

p
Ri �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NR=NS

p
Si
�2

Ri þ Si
; (3)

and the result of the test is Q in percentage, defined and interpreted
as in Appendix 1.
Definition of bins to construct two histograms to be compared

We gather the two groups into a single group of N measure-
ments. We order the samples, say in increasing order, and we group
them in p bins such that the same percentage of measurements
occurs in each bin (the amounts may also vary for each bin, if
desired). Then we compute the limits of the bins as follows: for
limits between two bins, we define the limit as the middle between
the highest sample of the lower bin and the lowest sample of the
higher bin. The minimum limit is defined as the lowest sample
minus the mean distance between samples of the lowest bin.
Likewise, the maximum limit is defined as the highest sample plus

http://www.scilab.org
http://www.scilab.org
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the mean distance between samples of the highest bin. The test is
then performed using the two groups, NR and NS, separately.
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